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Abstract: In recent years, great efforts are devoted to reducing the work cost of the bit operation, but it is still

unclear whether these efforts are sufficient for resolving the temperature stabilization problem in computation.

By combining information thermodynamics and a generalized constitutive model which can describe Fourier

heat conduction aswell as non-Fourier heat transport with nonlocal effects, we here unveil two types of the ther-

modynamic costs in the temperature stabilization problem. Each type imposes an upper bound on the amount

of bits operated per unit time per unit volume, whichwill eventually limit the speed of the bit operation. The first

type arises from the first and second laws of thermodynamics, which is independent of the boundary condition

and can be circumvented in Fourier heat conduction. The other type is traceable to the third law of thermo-

dynamics, which will vary with the boundary condition and is ineluctable in Fourier heat conduction. These

thermodynamic costs show that reducing the work cost of the bit operation is insufficient for resolving the

temperature stabilization problem in computation unless the work cost vanishes.
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1 Introduction

For a practical computational system, stabilizing its operating temperature at a satisfactory level is important

because the operating temperature can strongly influence its performance and reliability [1]. Unfortunately, this

demand is nowadays challenged by the extremely high heat flux in the computational system, which has limited

the computational performance for almost two decades [2], [3]. To face this challenge, great efforts have been

devoted to minimizing the work cost of the bit operation [4]–[10], which enables us to lower the heat flux as

much as possible. However, recent achievements in the field of information thermodynamics have unveiled the

physical limits of suchminimizations, i.e., the finite-time Landauer principles [11]–[14]. The finite-time Landauer

principles give lower bounds on the work cost of the bit-erasure operation, which take the form

WE = WL +
∑

T ≥

(
kB ln 2+

∑
min

)
T. (1)

Here,WE denotes the work cost per bit erased,WL = kBT ln 2 is the celebrated Landauer limit [15]–[23], kB
is the Boltzmann constant, T stands for the absolute temperature of the positionwhere the bit-erasure operation

takes place,
∑

is the averaged entropy generation due to the finite-time effect, and
∑

min is the minimum of
∑
,

which is typically determined by the system parameters as well as the protocol duration. The condition for

*Corresponding author: Bing-Yang Cao (曹曹曹阳阳阳曹曹曹), Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,

Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China, E-mail: caoby@tsinghua.edu.cn

Shu-Nan Li (李李李书书书李李李), Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering

Mechanics, Tsinghua University, Beijing 100084, China

https://doi.org/10.1515/jnet-2023-0099
mailto:caoby@tsinghua.edu.cn


116 — S.-N. Li and B.-Y. Cao: Costs of temperature stabilization in computation

∑ = ∑
min will show us how to minimize the work cost, but owing to

∑
min ≥ 0, the minimal work cost is always

larger than the Landauer limit. For the purpose of reducing the work cost further, Ray and Crutchfield [5] have

proposed a class of the bit-swap operations, whoseminimal work cost can reach the sub-Landauer level, namely,

min{WS} = 0.43WL, (2)

whereWS is the work cost per bit swapped.

Although minimizing the work cost as mentioned above will benefit the temperature stabilization without

doubt, it is still unclearwhether such efforts are sufficient for resolving the temperature stabilization problem in

computation. The previous studies restricted to the field of information thermodynamics are not able to answer

this question because they have not take into account heat transport. The work cost of the bit operation will

dissipate as heat, and in the absence of heat transport, all heat will accumulate in the computational system,

which inevitably poses a rise of the operating temperature. Therefore, a consideration on both information

thermodynamics and heat transport is necessary for the temperature stabilization problem in computation,

which has not been much discussed [24]. We mention that Sciacca and Alvarez have investigated another topics

related to non-Fourier heat transport and the concept of information [25].

In the present work, we investigate the one-dimensional and linear temperature stabilization problem

which satisfies the following assumptions. First, the bit operation is uniformly distributed and coexists with

one-dimensional heat transport on a finite domain [0, L]. Second, the local equilibrium is achieved everywhere

on this domain, which allows us to define the spatial distribution of the absolute temperature, T = T(x). Third,

the work cost of the bit operation can be fitted by

WO = aWL + b, (3)

whereWO is the work cost per bit operated, constant a is strictly positive and constant b is non-negative. The

results in Ref. [5] scales asWO(a > 0, b = 0), andWO(a = 1, b > 0) can cover the lower bound of the finite-time

Landauer principle which goes beyond weak coupling [14]. Finally, heat transport can be modeled in terms of

q = −𝜅∇T + l
2
1
∇2

q+ l
2
2
∇
(
∇ ⋅ q

)
, (4)

where q = q(x) is the one-dimensional heat flux,𝜅 is the constant thermal conductivity, l1 and l2 are non-negative

constants. Eq. (4) has been derived from various modeling methods [26]–[35], and in most methods, l1 and l2
are associated with the mean free path of the heat carriers. If at least one of l1 and l2 is strictly positive, Eq. (4)

depicts nonlocal heat transport,while the case of l1= l2= 0 corresponds to conventional Fourier heat conduction.

Indeed, Eq. (4) discards the terms with respect to the relaxation times as well as the temporal derivatives of the

heat flux and the local temperature, which describe the relaxational effects. That is becausewe here concentrate

on steady-state heat transport.

Based on the modeling assumptions mentioned above, it is theoretically demonstrated that there are two

types of constraints in the temperature stabilization problem. The first type arises from the first and second laws

of thermodynamics, and the other one is a result of the third law of thermodynamics. If these constraints are not

satisfied, the corresponding temperature stabilization problemwill be physically meaningless. Such constraints

are conceptualized as the thermodynamic costs of the temperature stabilization in computation, and elucidate

why minimizing the work cost of the bit operation is insufficient for resolving the temperature stabilization

problem in computation.

2 Constraint imposed by the first and second laws

of thermodynamics

In the temperature stabilization problem, the first law of thermodynamics is stated as

WOI −
(
∇ ⋅ q

)
= 0, (5)
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where I is the amount of bits operated per unit time per unit volume. For one-dimensional steady-state heat

transport, combining Eqs. (3)–(5) leads to

q = −
[
𝜅 − aI

(
l
2
1
+ l

2
2

)
kB ln 2

]
∇T. (6)

It should be emphasized that Eqs. (5) and (6) are for the three-dimensional system. For the one-dimensional

and two-dimensional systems, we should introduce the amount of bits operated per unit time per unit length

and per unit area respectively. On the other hand, the second law of thermodynamics enforces that any heat

transport process must have a non-negative entropy production [36], namely,

𝜎 = q ⋅∇
(
−T−1

)
=

[
𝜅 − aI

(
l
2
1
+ l

2
2

)
kB ln 2

]
⋅ |||∇(

T
−1)|||2 ≥ 0, (7a)

where 𝜎 is the local entropy production rate of heat transport. Owing to
|||∇(

T−1
)|||2 ≥ 0, inequality (7a) can be

simplified as

𝜅 − aI
(
l
2
1
+ l

2
2

)
kB ln 2 ≥ 0. (7b)

The first and second laws of thermodynamics are mathematically valid if and only if inequality (7b) is

satisfied.

For non-Fourier heat transport with the nonlocal effect (l2
1
+ l2

2
> 0), inequality (7b) will not be satisfied

unless

I ≤ I1 =
𝜅

a
(
l2
1
+ l2

2

)
kB ln 2

. (8)

According to inequality (8), the amount of bits operated per unit time per unit volume must be upper

bounded by I1. Otherwise, the first and second laws of thermodynamics will not be mathematically valid. Such

thermodynamic constraint reveals that the temperature stabilization comes at a cost, so it can be conceptu-

alized as the thermodynamic cost of the temperature stabilization in computation. Because the volume of a

practical computational system cannot be infinite, this thermodynamic cost will eventually limit the speed of

the bit operation. In other words, in the presence of nonlocal heat transport, a excessively fast bit operation

will render the temperature stabilization thermodynamically impossible. When it comes to Fourier heat con-

duction (l1 = l2 = 0), inequality (7b) is necessarily satisfied for arbitrary I ∈ (0,+∞). As a result, the first and

second laws of thermodynamics always possess the mathematical validity, and will not limit the speed of the bit

operation.

3 Constraint imposed by the third law of thermodynamics

The third law of thermodynamics requires the positive absolute temperature, and its mathematical validity will

vary with specific boundary value problems (BVPs). We here concern three commonly used BVPs. The first one

possesses the Dirichlet boundary condition as follows,

T(x) =
⎧⎪⎨⎪⎩

T1, x = 0

T2, x = L

(9)

Because T1 and T2 are actually the absolute temperatures of the boundary points, they must be positive. In

the second BVP, the boundary heat fluxes are given,

q(x) =
⎧⎪⎨⎪⎩

q1, x = 0

q2, x = L

(10a)
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Note that the boundary heat fluxes are for cooling the computational system. Accordingly, q1 and q2 should

be non-positive and non-negative respectively. By the virtue of Eq. (6), Eq. (10a) can be reformulated as the

standard Neumann boundary condition

∇T(x) =

⎧⎪⎪⎨⎪⎪⎩

− q1

𝜅eff − aI
(
l2
1
+ l2

2

)
kB ln 2

, x = 0

− q2

𝜅eff − aI
(
l2
1
+ l2

2

)
kB ln 2

, x = L

(10b)

The third BVP describes the scenario wherein the one surface of the computational system is adiabatic, and

the other surface is cooled by a heat sink. Without loss of generality, the boundary condition of such BVP can be

written as

q(x) =
⎧⎪⎨⎪⎩

0, x = 0

R
−1
0

(
T − T0

)
, x = L

, (11a)

where R0 > 0 stands for the thermal boundary resistance between the computational system and the heat sink

[37]–[40], and T0 > 0 is the absolute temperature of the heat sink. Similarly, Eq. (11a) can also be reformulated

as a mix of the standard Neumann and Robin boundary conditions, namely,

[
𝜅 − aI

(
l
2
1
+ l

2
2

)
kB ln 2

]
∇T(x) =

⎧⎪⎨⎪⎩
0, x = 0

R
−1
0

(
T0 − T

)
, x = L

(11b)

In order to avoid the nonlinearity, all parameters in the aforementioned boundary conditions are assumed

to be temperature-independent.

Combining Eqs. (4)–(6) yields

∇2
T + aIkB ln 2

𝜅 − aI
(
l2
1
+ l2

2

)
kB ln 2

T + bI

𝜅 − aI
(
l2
1
+ l2

2

)
kB ln 2

= 0. (12)

The general solution of Eq. (12) takes the form

T = C1 sin
(
𝛼x

L

)
+ C2 cos

(
𝛼x

L

)
− b

akB ln 2
, 𝛼 =

√
aIkBL

2 ln 2

𝜅 − aI
(
l2
1
+ l2

2

)
kB ln 2

. (13)

where C1 and C2 are the undetermined coefficients. For this solution, the third law of thermodynamics is math-

ematically valid if and only if

y(𝛼) = min
0≤x≤L

{
C1 sin

(
𝛼x

L

)
+ C2 cos

(
𝛼x

L

)}
>

b

akB ln 2
. (14)

Note that y(𝛼) is always non-positive for any 𝛼 ≥ 𝜋, which is contradictory to inequality (14). As a conse-

quence, inequality (14) has the following the necessary condition,

𝛼 < 𝛼1 = 𝜋, (15a)

which is equivalent to

I < I2 =
𝜅

a
(
l2
1
+ l2

2
+ L2𝜋−2)kB ln 2

. (15b)

Similar to inequality (8), inequality (15b) also imposes an upper bound on the amount of bits operated per

unit time per unit volume, which will not vary with the boundary values. Nonetheless, we cannot yet regard

inequality (15b) as another thermodynamic cost of the temperature stabilization in computation. That is because

the sufficient condition for inequality (14) is still lacking, which will be presented in the following.
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With inequality (15b) satisfied, inequality (14) can be simplified as

y(𝛼) = min{C2, C1 sin 𝛼 + C2 cos 𝛼} >
b

akB ln 2
. (16)

For the first BVP, the undetermined coefficients are obtained as

⎧⎪⎪⎨⎪⎪⎩

C2 =
T2 − T1 cos 𝛼

sin 𝛼
+ b

akB ln 2
tan

𝛼

2

C2 = T1 +
b

akB ln 2

(17)

By substituting Eq. (17) in to inequality (16), we can acquire the sufficient and necessary condition for

inequality (14), namely,

y(𝛼) = y1(𝛼)

= min{T2, T1} +
b

akB ln 2
>

b

akB ln 2
, (18)

where function y1(𝛼) is defined on (0, 𝜋).Mathematically, inequality (18) always holds,whichmeans that inequal-

ity (15b) is the necessary and sufficient condition for inequality (14). Therefore, inequality (15b) is another

thermodynamic cost of the temperature stabilization in computation. For a finite computational system, this

thermodynamic cost will entail a speed limit to the bit operation as well. Unlike inequality (8), inequality (15b)

remains well-defined in the case of l1 = l2 = 0. It means that in Fourier heat conduction, I2 is the unique upper

bound on I. In the case of nonlocal heat transport (l2
1
+ l2

2
> 0), I2 is smaller than I1 as shown below,

I2

I1

= 1− L2𝜋−2

l2
1
+ l2

2
+ L2𝜋−2 < 1, l2

1
+ l

2
2
> 0 . (19)

These facts imply that for the temperature stabilization problem described by the first BVP, inequality (15b)

always plays a dominant role in constraining I as well as limiting the speed of the bit operation.

The coefficients corresponding to the second BVP are given by

⎧⎪⎪⎨⎪⎪⎩

C1 = − q1L

𝜅𝛼 − a𝛼I
(
l2
1
+ l2

2

)
kB ln 2

C2 =
q2L csc 𝛼 − q1L cot 𝛼

𝜅𝛼 − a𝛼I
(
l2
1
+ l2

2

)
kB ln 2

, (20)

and inequality (14) is then simplified as

y(𝛼) = y2(𝛼)

=
(
max{−q1, q2} cos 𝛼 +min{−q1, q2}

)
L[

𝜅 − aI
(
l2
1
+ l2

2

)
kB ln 2

]
𝛼 sin 𝛼

>
b

akB ln 2
, (21)

where function y2(𝛼) is defined on (0, 𝜋). We now prove that in this case, the sufficient and necessary condition

for inequality (14) is compose of

max{−q1, q2} > 0, (22a)

and

I < I3 =
𝜅

a
(
l2
1
+ l2

2
+ L2𝛼−2

2

)
kB ln 2

, 𝛼2 = f

(
y2 =

b

akB ln 2

)
, (22b)
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where f
(
y2

)
denotes the inverse function of y2(𝛼) and is defined on (−∞,+∞). If inequality (22a) is not satisfied,

the following corollary necessarily holds,

q1 = q2 = 0 ⇒ y2(𝛼) ≡ 0 <
b

akB ln 2
, (23)

which is contradictory to inequality (21). Consequently, inequality (22a) is the necessary condition for inequality

(14). With inequality (22a) satisfied, we can acquire

lim
𝛼→0+

y2(𝛼) = +∞, (24a)

lim
𝛼→𝜋−y2(𝛼) = −∞. (24b)

Eqs. (24a) and (24b) indicate that if f
(
y2

)
exists, it should be defined on (−∞,+∞). On the other hand, the

derivative of y2(𝛼) can be calculated as

dy2(𝛼)

d𝛼
=

[
f1(𝛼)+ f2(𝛼)

]
L[

𝜅 − aI
(
l2
1
+ l2

2

)
𝜅B ln 2

]
𝛼2 sin2 𝛼

, (25)

with {
f1(𝛼) = max{−q1, q2}

(
𝛼 + cos 𝛼 sin 𝛼

)
f2(𝛼) = min{−q1, q2}

(
𝛼 cos 𝛼 + sin 𝛼

) (26)

By utilizing the inequality chain

(
𝛼 + sin 𝛼

)
>

(
𝛼 + cos 𝛼 sin 𝛼

)
> 0,∀𝛼 ∈ (0, 𝜋) , (27)

we can deduce

f1(𝛼)+ f2(𝛼) > min{−q1, q2}
(
𝛼 + cos 𝛼 sin 𝛼

)
+ g(𝛼)

= min{−q1, q2}
(
𝛼 + sin 𝛼

)
(1+ cos 𝛼) > 0

⇒
dy2(𝛼)

d𝛼
< 0, (28)

and hence, f
(
y2

)
necessarily exists. Meanwhile, inequality (21) is necessarily satisfied as long as 𝛼 < 𝛼2, which is

equivalent to inequality (22b). Taking all these into account, the sufficient and necessary condition for inequality

(14) is composed of inequalities (22a) and (22b).

Similarly, for the temperature stabilization problem described by the second BVP, the composite of inequal-

ities (22a) and (22b) can be regarded as a thermodynamic cost of the temperature stabilization in computation.

The component given by inequality (22a) is a lower bound constraint on the boundary values, and has nothing

to do with the amount of bits operated per unit time per unit volume. That is the most main difference between

this thermodynamic cost and inequality (8). The physical meaning of inequality (22a) is that the computational

system cannot be adiabatic at both boundary points. Otherwise, the temperature stabilization is thermodynam-

ically impossible. This physical meaning can be interpreted from the viewpoint of the energy balance, which

is indispensable for the temperature stabilization. If the computational system is adiabatic at both boundary

points, the energy balance necessarily requires that the total heat generation is zero. However, according to

Eq. (3), the total heat generation is strictly positive unless the negative absolute temperature coexists with the

positive absolute temperature. Such coexistence will inevitably violate the third law of thermodynamics, so

the corresponding temperature stabilization problem must be thermodynamically impossible. The other com-

ponent, inequality (22b), is an upper bound constraint on the amount of bits operated per unit time per unit

volume. Meanwhile, the upper bound I3 will exhibit the following mathematical behaviors,

I3 < +∞, l1 = l2 = 0, (29a)
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I3 < I1, l
2
1
+ l

2
2
> 0 . (29b)

which mean that for the temperature stabilization problem described by the second BVP, inequality (22b) will

always dominate the speed limit to the bit operation.

When it comes to the third BVP, we can acquire

{
C1 = 0

C2 = g(𝛼)
[
T0 + b∕

(
akB ln 2

)], (30)

with

g(𝛼) = L

L cos 𝛼 − R
[
𝜅 − aI

(
l2
1
+ l2

2

)
kB ln 2

]
𝛼 sin 𝛼

. (31)

In this case, inequality (14) becomes

y(𝛼) = y3(𝛼)

= cos 𝛼

g(𝛼)

(
T0 +

b

akB ln 2

)
>

b

akB ln 2
, (32)

where function y3(𝛼) is defined on
(
0,

𝜋

2

)
. Using the method stated above, the following thermodynamic cost

can be derived,

I < I4 =
𝜅

a
(
l2
1
+ l2

2
+ L2𝛼−2

3

)
kB ln 2

, 𝛼3 = h
(
y3 = 0

)
, (33)

where h
(
y3

)
is the inverse function of y3(𝛼) and defined on (−∞,+∞). Similarly, inequality (33) is also an upper

bound the amount of bits operated per unit time per unit volume. Moreover, inequalities (29a) and (29b) will still

hold when I3 is replaced by I4. Thus, for the temperature stabilization problem described by the third BVP, the

speed limit to the bit operation is dominated by inequality (33).

4 Conclusions

1. The laws of thermodynamics will impose two types of the constraints on the temperature stabilization in

computation, which can be considered as the thermodynamic costs of the temperature stabilization in com-

putation. The forms of these thermodynamic costs are strongly influenced by the thermal conductivity, the

work cost of the bit operation, and the nonlocal effect of heat transport.

2. The first type of the thermodynamic cost originates from the first and second laws of thermodynamics.

This type will not vary with the boundary condition, and can be circumvented in Fourier heat conduction.

In nonlocal heat transport, its form is an inequality that imposes an upper bound on the amount of bits

operated per unit time per unit volume. For a finite computational system, such upper bound will limit the

speed of the bit operation.

3. The other type of the thermodynamic cost is traceable to the third law of thermodynamics, whose form relies

on the boundary condition. For the temperature stabilization problem which is described by the Dirichlet

or mixed BVP, its form is also an inequality that imposes an upper bound on the amount of bits operated per

unit time per unit volume. For the temperature stabilization problem which is described by the Neumann

BVP, its forms is compose of an inequality constraining the boundary heat fluxes and an inequality that

imposes an upper bound on the amount of bits operated per unit time per unit volume.

4. The latter type of the thermodynamic cost can never be circumvented in Fourier heat conduction, and in

nonlocal heat transport, its corresponding upper bound is always smaller than that of the former type. As a

consequence, the latter typewill play a dominant role in limiting the speed of the bit operation. Furthermore,

because the latter type is ineluctable, reducing the work cost of the bit operation is insufficient for resolving

the temperature stabilization problem in computation.
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5. The main differences between this work and Ref. [24] are as follows. First, this work considers the non-

locality of non-Fourier heat transport, whereas Ref. [24] is restricted to Fourier heat conduction. In the

absence of the nonlocality, the first and second laws of thermodynamics can be automatically satisfied, so

there is no corresponding constraint in Ref. [24]. Moreover, Ref. [24] actually neglects the thermal bound-

ary resistance between the computational system and the heat sink, whose influence is shown in this work.

Finally, thiswork concentrates on the steady-state temperature field, and does not involve the unsteady-state

temperature wave.
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